PARTS OF SIMILAR TRIANGLES NOTES

/hen two triangles are similar, corresponding altitudes, angle bisectors, medians and perimeters are proportional to the corresponding sides.

Altitude	Angle Bisector	Median
	AA	
A segment that starts at a vertex and forms a right angle with the opposite side.	A segment that divides an angle into two smaller congruent angles.	A segment that connect the vertex of a triangle to the midpoint of the opposite side.

Examples: Find x for each pair of similar triangles.

A)

$$\frac{5}{7} = \frac{6}{x}$$

C)

$$\frac{1}{20} = \frac{x}{24}$$

B)

D)

E)

$$\frac{2x+1}{x+4} = \frac{8}{5}$$
 $10x + 5 = 8x + 3x$

$$2x = 27$$

$$x = 13.5$$

PARTS OF SIMILAR TRIANGLES NOTES

Examples: Find the perimeter of the indicated triangle given that the two triangles are similar.

F) Δ KLM if FG = 30, GH = 38, HF = 38, and KL = 24.

$$\frac{34}{30} = \frac{4}{5}$$

$$\frac{4}{5} = \frac{x}{38}$$
 $5x = 152$
 $x = 30.4$

$$km = Lm = 30.4$$
 $+ 30.4$
 $+ 30.4$
 $+ 34$

G) \triangle RST if MR = 25, PR = 20, and MP = 10.

$$R = \frac{25}{20} \frac{M}{P} = \frac{30}{30} T$$

$$\frac{20}{10} = \frac{40}{ST}$$

$$20x = 400$$

$$x = 20$$

$$\frac{\partial 0}{\partial t} = \frac{\partial s}{x + \partial s}$$