Solving Quadratics by Completing the Square Notes

When completing the square, look at the problems below to determine a pattern.

A)
$$x^2 + 16x + 64$$
 ($\chi + 8$) λ

B)
$$x^2 - 10x + 25$$

c)
$$x^2 - 14x + 49$$
 $(\chi - \gamma)^2$

Patterns you noticed: all perfect squares, and up with repeated factors, the value is half of 6 and the square root of Perfect square trinomials:

Find the value of c that makes each trinomial a perfect square. Then write the trinomial as a perfect square.

- To find c take the coefficient of the middle term, divide by 2 and square it
- To write a perfect square trinomial the sign depends on what the first sign is.

$$\circ$$
 $(x \pm \frac{1}{2} \text{ of the second term's coefficient})^2$

A)
$$x^2 + 4x + c$$

$$\frac{4}{3} = \lambda^2 = 4$$

$$c = 4$$

$$(\chi + \lambda)^2$$

B)
$$x^2 - 18x + c$$

$$-\frac{18}{3} = -9^3 = 8$$

$$c = 81$$

$$(\chi - 9)^3$$

$$x^{2}-18x+c$$

$$-\frac{18}{3} = -9^{2} = 81$$

$$C = 81$$

$$C = 81$$

$$C = 8.05$$

$$(x-9)^{3}$$

$$(x+1.5)^{2}$$

Steps for completing the square:

- 1) Make sure x's are on one side of the equation
- 2) Find c and add to each side of the equal sign
- 3) Simplify by writing as a perfect square trinomial.
- 4) Take the square root of each side.
 - **Always use ± when solving**

A)
$$x^{2} - 6x = 40$$
 $-\frac{6}{3} = -3^{2} = 9$
 $x^{2} - 6x + 9 = 40 + 9$
 $x^{2} - 4x - 5 = 0$
 $x^{2} - 4x + 4 = 0$
 $x^{2} - 3x +$

x-1/2 = til 15/

$$-\frac{4}{3} = -3^{2} = 4$$

$$(x^{2} - 4x + 4 = 5 + 4)$$

$$(x - a)^{2} = 9$$

$$x - a = \pm 3$$

$$x^{2} + 6x + 15 = 0$$

$$(x + 3)^{2} = 9$$

$$x^{3} + 6x + 9 = -15 + 9$$

$$x + 3 = \pm \sqrt{6}$$

C)
$$x^{2} + 4x + 1 = 0$$

 $+\frac{4}{3} = 3^{2} = 4$
 $\chi^{2} + 4\chi + 4 = -1 + 4$
 $(\chi + a)^{2} = 3$
 $\chi + a = \pm \sqrt{3}$
F) $x^{2} + 11x + 24 = 0$
 $\chi^{2} + 11x + 24 = 0$
 $\chi^{2} + 11x + 30.25 = -244$
 $\chi^{2} + 30.25$