Classify Triangles

Triangles are named by using its vertices.

For example, we can call the following triangle:

Opposite Sides and Angles

Opposite Sides:

Side opposite to ∠A: gC

BC Ac

Side opposite to $\angle B$: Side opposite to $\angle C$:

器

s Ac

Opposite Angles:

Angle opposite to \overline{BC} : $\langle A \rangle$ Angle opposite to \overline{AC} : $\langle B \rangle$

Angle opposite to \overline{AB} :

<u>______</u>

Two ways to Classify Triangles

By the angles A) RIGHT

3) Acute

c) obtuse

D) Wallanalla

By the sides A)

equilateral - alls

c) Scalene - no same

Identify the indicated type of triangle in the figure.

lsosceles triangle

DABD, ABED

B) Scalene triangle

DABE

C) Right triangle

DACD

d= V(x2-x1)2 + (y2-y1)2

Find the measures of the sides of ΔABC and classify the triangle by its sides.

A(2, 2), B(3, 9), and C(-5, 3)

$$AB = \sqrt{(3-\lambda)^2 + (0-\lambda)^2} = \sqrt{50} = 5\sqrt{\frac{1}{3}}$$

Sosceles

Parts of an Isosceles Triangle

- An isosceles triangle is a triangle with two congruent sides.
- The congruent sides are called legs and the third side is called the base.

∠1 and∠2 are base angles ∠3 is the vertex angle

Base

: Isosceles Triangle

Isosceles Triangle Theorems

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

If $\overline{AB} \cong \overline{AC}$, then $\angle B \cong \angle C$.

Example: Find the value of x.

50+X+X=180 9) tax = 180

Isosceles Triangle Theorems

If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

If $\angle B \cong \angle C$, then $\overline{AB} \cong \overline{AC}$.

Example: Find the value of x.

3X-7=X+15 ax=aa

Side lengths = 26

50 + 2x + 2x = 180 $50+4x = 180 \quad X = 32.5$ 4x = 130 3y-10 = 8y-30

Find m and n.

50 +50 +n = 180

Equilateral Triangles - Corollaries-

- A triangle is equilateral if and only if it is equiangular.
- Each angle of an equilateral triangle measures 60°.
- · Find a and y.

Equilateral Triangle

Find x and the measure of each side of the triangle.

 \triangle GHJ is isosceles, \angle G is the vertex angle, GH = x + 7, GJ = 3x - 5, and HJ = x - 1

X+7=3X-5 12=2X X=4 GH=10+7=13

Find x and the measure of each side of the triangle.

 \triangle MPN is equilateral with MN = 3x - 6. MP = x + 4, and NP = 2x - 1.

