Lesson 10-3

Arcs and Chords

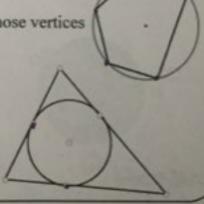
Polygons

Inscribed Polygon:

A polygon inside the circle whose vertices lie on the circle.

Circumscribed Polygon:

A polygon whose sides are tangent to a circle.



Lesson 8-4: Arcs and Chords

Each regular polygon is inscribed in a circle. Determine the measure of each arc that corresponds to a side of the polygon.

Triangle

$$\frac{360}{3} = 120^{\circ}$$

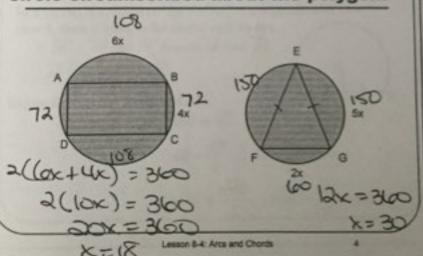
Square

20-gon

Lesson 8-4: Arcs and Chords

4

Determine the measure of each arc of the circle circumscribed about the polygon.

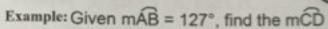


Theorem #1:

In a circle, if two chords are congruent then their corresponding minor arcs are congruent and vice versa.

If AB = CD, then ÂB ≅ CD

If $\widehat{AB} \cong \widehat{CD}$, then AB = CD



Since mAB = mCD

mCD = 127°

8

Theorem #2:

In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chord and its arc.

If $\overline{DC} \perp \overline{AB}$ then \overline{DC} bisects \overline{AB} and \overline{AB}

Example: If AB = 5 cm, find AE.

If $m \stackrel{\frown}{AB} = 120^{\circ}$, find $m \stackrel{\frown}{AC}$

$$AE = \frac{AB}{2}$$
 : $AE = \frac{5}{2} = 2.5$ cm

$$m R C = \frac{m R B}{2}$$
, :: $m R C = \frac{120}{2} = 60^{\circ}$

ā

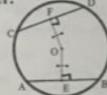
Theorem #3:

In a circle, two chords are congruent if and only if they are equidistant from the center.

$$\overline{CD} \cong \overline{AB} \ iff \ \overline{OF} \cong \overline{OE}$$

Example: If AB = 5 cm, find CD.

Since AB = CD, CD = 5 cm.



2

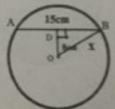
Try Some Sketches:

- Draw a circle with a chord that is 15 inches long and 8 inches from the center of the circle.
- Draw a radius so that it forms a right triangle.
- · How could you find the length of the radius?

Solution: AODB is a right triangle and OD bisects AB

DB=
$$\frac{AB}{2} = \frac{15}{2} = 7.5 \text{ cm}$$

OD=8 cm
OB²=OD²+DB²
OB²=8²+(7.5)²=64+56.25=120.25
OB= $\sqrt{120.25} \approx 11 \text{ cm}$



8

Try Some Sketches:

- Draw a circle with a diameter that is 20 cm long.
- Draw another chord (parallel to the diameter) that is 14cm long.
- Find the distance from the smaller chord to the center of the circle.

Solution: \overline{OE} bi $\sec ts \overline{AB}$. $\therefore EB = \frac{AB}{2} = \frac{14}{2} = 7cm$

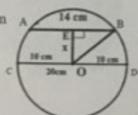
 Δ EOB is a right triangle. OB (radius) = 10 cm A

$$OB^2 = OE^2 + EB^2$$

$$10^2 = X^2 + 7^2$$

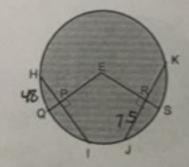
$$X^2 = 100 - 49 = 51$$

$$X = \sqrt{51} = 7.1 \text{ cm}$$



ø

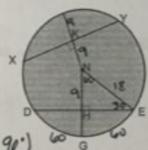
In circle E, mHQ = 48, HI = JK, and JR = 7.5. Find each measure.



Lesson 8-4: Arcs and Chords

The radius of circle N is 18, NK = 9, mDE = 120. Find each measure.

- m∠HNE = 60
- m∠HEN = 30
- = HN = 9 (use 30,60; 90)

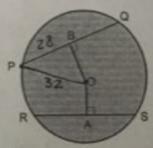


Lesson 8-4: Arcs and Chords

11

The radius of circle 0 = 32, PQ = RS, and PQ = 56. Find each measure.

- PB = 28
- BQ = 28
- OB 282+082=322
- 082=340 RS = 56 08= 15.49



Lesson 8-4: Aros and Chords

12